3 research outputs found

    A Genetic Programming Based Heuristic to Simplify Rugged Landscapes Exploration

    Get PDF
    Some optimization problems are difficult to solve due to a considerable number of local optima, which may result in premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach coupled with a self-tuning fitness function. More specifically, to evaluate the fitness of the produced surrogate functions, we employ Fuzzy Self-Tuning Particle Swarm Optimization, a setting-free version of particle swarm optimization. To assess the performance of the proposed method, we considered a set of benchmark functions characterized by high noise and ruggedness. Moreover, the method is evaluated over different problems’ dimensionalities. The proposed approach reveals its suitability for performing the proposed task. In particular, experimental results confirm its capability to find the global argminimum for all the considered benchmark problems and all the domain dimensions taken into account, thus providing an innovative and promising strategy for dealing with challenging optimization problems. Doi: 10.28991/ESJ-2023-07-04-01 Full Text: PD

    Combining Genetic Programming and Particle Swarm Optimization to Simplify Rugged Landscapes Exploration

    Full text link
    Most real-world optimization problems are difficult to solve with traditional statistical techniques or with metaheuristics. The main difficulty is related to the existence of a considerable number of local optima, which may result in the premature convergence of the optimization process. To address this problem, we propose a novel heuristic method for constructing a smooth surrogate model of the original function. The surrogate function is easier to optimize but maintains a fundamental property of the original rugged fitness landscape: the location of the global optimum. To create such a surrogate model, we consider a linear genetic programming approach enhanced by a self-tuning fitness function. The proposed algorithm, called the GP-FST-PSO Surrogate Model, achieves satisfactory results in both the search for the global optimum and the production of a visual approximation of the original benchmark function (in the 2-dimensional case)

    The Effect of Multi-Generational Selection in Geometric Semantic Genetic Programming

    Get PDF
    Castelli, M., Manzoni, L., Mariot, L., Menara, G., & Pietropolli, G. (2022). The Effect of Multi-Generational Selection in Geometric Semantic Genetic Programming. Applied Sciences (Switzerland), 12(10), 1-13. https://doi.org/10.3390/app12104836 --------- Funding: This work was supported by national funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/DS/0022/2018).Among the evolutionary methods, one that is quite prominent is genetic programming. In recent years, a variant called geometric semantic genetic programming (GSGP) was successfully applied to many real-world problems. Due to a peculiarity in its implementation, GSGP needs to store all its evolutionary history, i.e., all populations from the first one. We exploit this stored information to define a multi-generational selection scheme that is able to use individuals from older populations. We show that a limited ability to use “old” generations is actually useful for the search process, thus showing a zero-cost way of improving the performances of GSGP.preprintpublishersversionpublishe
    corecore